Journal of Organometallic Chemistry, 99 (1975) C5–C7 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

REACTION OF TRIMETHYLSILYL CYANIDE WITH CARBODIIMIDES

IWAO OJIMA^{*} and SHIN-ICHI INABA

Sagami Chemical Research Center, Nishi-Ohnuma 4-4-1, Sagamihara, Kanagawa 229 (Japan) and YOICHIRO NAGAI

Department of Chemistry, Gunma University, Kiryu, Gunma 376 (Japan) (Received June 18th, 1975)

Summary

Trimethylsilyl cyanide react with carbodiimides in the presence of aluminum trichloride to give 1/1 adducts, *N*-trimethylsilyl-1-cyanoformamidines (I), in high yields. At rather high temperatures (150-200 °C) the reaction also proceeded without catalyst. The 1/1 adduct reacted with isocyanates and carbodiimides forming 4,5-diiminodiazolidine-2-one and 2,4,5-triiminoimidazolidine, respectively.

Recently, it has been shown that trimethylsilyl cyanide is a good reagent in organic syntheses for introducing a cyano group, and for protecting and activating carbonyl groups [1-3]. However, the reaction of trimethylsilyl cyanide with heterocumulenes has received only limited attention.

In the present communication, we describe the cyanosilylation of carbodiimides and its application to the synthesis of five-membered heterocyclic systems^{*}

We found that trimethylsilyl cyanide reacts with N,N'-disubstituted carbodiimides in the presence of a catalytic amount of aluminum trichloride at ambient temperature to give N,N'-disubstituted N-trimethylsilyl-1-cyanoformamidines (I) in high yields. These adducts were easily solvolyzed to the corresponding 1-cyanoformamidines (II) by methanol or H₂O/ether in quantitative yield. Compounds I also were converted to N-acetyl-1-cyanoformamidines (III) by the action of acetyl chloride in nearly quantitative yield (Scheme 1).

In a typical procedure, 65 mg of aluminum trichloride (5 mol%) was added to a mixture of N,N'-diisopropylcarbodiimide (1.26 g, 10 mmol) and a slight excess of trimethylsilyl cyanide (1.19 g, 12 mmol) under nitrogen, and the mixture was stirred at ambient temperature for 4 h. After the reaction was completed, the reaction mixture was distilled under reduced pressure to give

^{*}IR, NMR and mass spectra and elemental analyses of all new compounds were consistent with the assigned structures.

SCHEME 1

1.89 g (84%) of N,N'-diisopropyl-N-trimethylsilyl-1-cyanoformamidine (Ia; b.p. 53°/1.3 mmHg). The yield of Ia estimated by direct hydrolysis of the reaction mixture was found to be 95%. In a similar manner, N,N'-dicyclohexyl- and N,N'-di-p-tolyl-N-trimethylsilyl-1-cyanoformamidines (Ib and Ic) were produced in nearly quantitative yields * (after hydrolysis 98% and 96%, respectively).

Trimethylsilyl cyanide also reacted with N,N'-diisopropylcarbodiimide in the absence of the catalyst under more drastic conditions, e.g., 24 h at 190 °C, to give Ia in 85% yield. Similarly, the reaction of N,N'-dicyclohexylcarbodiimide with trimethylsilyl cyanide under the conditions described above, followed by hydrolysis afforded the 1/1 adduct IIb in 54% yield.

Cycloadditions of N-trimethylsilyl-1-cyanoformamidines (I) with isocyanates or carbodiimides were studied in connection with the reaction of isocyanates with trimethylsilyl cyanide, which gave cyclic 1/2 adducts (5-trimethylsilyliminodiazolidine-2,4-diones) [4]. The reaction of Ia with p-toluenesulfonyl isocyanate proceeded exothermally to afford 1-p-toluenesulfonyl-3-isopropyl-2isopropylimino-5-trimethylsilyliminoimidazolidine-2-one (IVa), in quantitative yield, while the reaction of phenyl isocyanate with Ia required heating at 80 °C for 14 h to produce the cycloadduct, IVb, in 87% yield. In the presence of aluminum trichloride (5 mol%), however, the latter cycloaddition took place smoothly at ambient temperature to give IVb in excellent yield. The 5-trimethylsilyliminoimidazolidine-2-ones (IVa and IVb) thus obtained were easily converted to the corresponding 5-iminoimidazolidine-2-ones (Va or Vb) in quantitative yields by action of methanol.

In the case of carbodiimides, cycloaddition required drastic conditions. For example, the reaction of Ib with N,N'-dicyclohexylcarbodiimide proceeded at 190 °C (60 h), to afford a cycloadduct, 1,3-dicyclohexyl-4-cyclohexylimino-5-trimethylsilyliminoimidazolidine (IVc), in 56% yield. This product was easily converted to the corresponding 5-iminoimidazolidine (Vc) by methanol in

^{*}Direct distillation of the reaction mixture of lb resulted in partial decomposition (b.p. $118^{\circ}/0.3$ mmHg). However, a sample which was pure enough for elemental analyses was obtained when n-hexane was added to the reaction mixture and the precipitate, AlCl₃, was filtered off with a G-4 glass filter under argon at -10 °C and the filtrate was concentrated in vacuo. A pure sample of Ic which give satisfactory elemental analyses was obtained by recrystallization from n-hexane using a G-4 glass filter under argon at -78 °C.

a R = 1 - Pr, $R' = P - CH_3C_6H_4SO_2$, X = Ob R = 1 - Pr, R' = Ph, X = Oc $R = R' = cyclo - C_6H_{11}$, $X = cyclo - C_6H_{12}$, N

quantitative yield. Addition of a catalytic amount of aluminum trichloride to the reaction system did not display a significant affect in contrast with the similar reaction of phenyl isocyanate.

As shown in Scheme 2, cycloaddition most likely is a stepwise process.

Further investigations and applications of the synthesis of heterocycles are now in progress.

References

- 1 D.A. Evans and L.K. Truesdale, Tetrahedron Lett., (1973) 4929; D.A. Evans, L.K. Truesdale and G.L. Carroll, Chem. Commun., (1973) 55; D.A. Evans, J.M. Hoffman and L.K. Truesdale, J. Amer. Chem. Soc., 95 (1973) 5822.
- 2 W. Lidy and W. Sundermeyer, Chem. Ber., 106 (1973) 587; Idem, Tetrahedron Lett., (1973) 1449. 3 (a) K. Deuchert, U. Hertenstein and S. Hunig, Synthesis, (1973) 777; (b) S. Hunig and G. Wehner,
- Synthesis, (1975) 180; (c) U. Hertenstein and S. Hunig, Angew. Chem., 87 (1975) 195.
- 4 I. Olima, S. Inaba and Y. Nagai, Chem. Commun., (1974) 826.